Abstract

Lightweight materials are highly desired in many engineering applications. A popular approach to obtain lightweight polymers is to prepare polymeric syntactic foams by dispersing hollow particles, such as hollow glass microbubbles (HGMs), in a polymer matrix. Integrating shape memory vitrimers (SMVs) in fabricating these syntactic foams enhances their appeal due to the multifunctionality of SMVs. The SMV-based syntactic foams have many potential applications, including actuators, insulators, and sandwich cores. However, there is a knowledge gap in understanding the effect of the HGM volume fraction on different material properties and behaviors. In this study, we prepared an SMV-based syntactic foam to investigate the influence of the HGM volume fractions on a broad set of properties. Four sample groups, containing 40, 50, 60, and 70% HGMs by volume, were tested and compared to a control pure SMV group. A series of analyses and various chemical, physical, mechanical, thermal, rheological, and functional experiments were conducted to explore the feasibility of ultralight foams. Notably, the effect of HGM volume fractions on the rheological properties was methodically evaluated. The self-healing capability of the syntactic foam was also assessed for healing at low and high temperatures. This study proves the viability of manufacturing multifunctional ultralightweight SMV-based syntactic foams, which are instrumental for designing ultralightweight engineering structures and devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call