Abstract

Let v be a henselian valuation of arbitrary rank of a field K with valuation ring Rv having maximal ideal Mv. Using the canonical homomorphism from Rv onto Rv/Mv, one can lift any monic irreducible polynomial with coefficients in Rv/Mv to yield monic irreducible polynomials over Rv. Popescu and Zaharescu extended this approach and introduced the notion of lifting with respect to a residually transcendental prolongation w of v to a simple transcendental extension K(x) of K. As it is well known, the residue field of such a prolongation w is [Formula: see text], where [Formula: see text] is the residue field of the unique prolongation of v to a finite simple extension L of K and Y is transcendental over [Formula: see text] (see [V. Alexandru, N. Popescu and A. Zaharescu, A theorem of characterization of residual transcendental extension of a valuation, J. Math. Kyoto Univ.28 (1988) 579–592]). It is known that a lifting of an irreducible polynomial belonging to [Formula: see text] with respect to w, is irreducible over K. In this paper, we give some sufficient conditions to ensure that a given polynomial in K[x] satisfying these conditions which is a lifting of a power of some irreducible polynomial belonging to [Formula: see text] with respect to w, is irreducible over K. Our results extend Eisenstein–Dumas and generalized Schönemann irreducibility criteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.