Abstract
A study that compares between decentralized and centralized controllers for electromagnetic suspension (EMS) Maglev systems that use combined magnets with an inverted U-rail for levitation and lateral control is presented. A simple 2-DOF (degrees of freedom) Maglev system model (rigid and flexible body cases) that comprises heave and lateral modes is used. The study is based on two aspects. First, by sketching the multi-input multi-output (MIMO) root loci with every controller individually for system rigid and flexible body cases. Second, a gradient-like search algorithm based on an optimal criterion for decentralized and centralized controllers' gains tuning is used. The work is generalized on a real EMS Maglev system, and the simulation results for these Maglev systems shows that the centralized control is more capable of lateral displacements suppression that may result from disturbing lateral forces than the decentralized one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Dynamic Systems, Measurement, and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.