Abstract

We study the efficiency of greedy algorithms with regard to redundant dictionaries in Hilbert spaces. We obtain upper estimates for the errors of the Pure Greedy Algorithm and the Orthogonal Greedy Algorithm in terms of the best m-term approximations. We call such estimates the Lebesgue-type inequalities. We prove the Lebesgue-type inequalities for dictionaries with special structure. We assume that the dictionary has a property of mutual incoherence (the coherence parameter of the dictionary is small). We develop a new technique that, in particular, allowed us to get rid of an extra factor m 1 / 2 in the Lebesgue-type inequality for the Orthogonal Greedy Algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.