Abstract

The approximate solution of optimization and control problems for systems governed by linear, elliptic partial differential equations is considered. Such problems are most often solved using methods based on the application of the Lagrange multiplier rule followed by discretization through, e.g., a Galerkin finite element method. As an alternative, we show how least-squares finite element methods can be used for this purpose. Penalty-based formulations, another approach widely used in other settings, have not enjoyed the same level of popularity in the partial differential equation case perhaps because naively defined penalty-based methods can have practical deficiencies. We use methodologies associated with modern least-squares finite element methods to develop and analyze practical penalty methods for the approximate solution of optimization problems for systems governed by linear, elliptic partial differential equations. We develop an abstract theory for such problems; along the way, we introduce several methods based on least-squares notions, and compare and constrast their properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.