Abstract
In this letter, we provide a study of learning in a Hilbert space of vectorvalued functions. We motivate the need for extending learning theory of scalar-valued functions by practical considerations and establish some basic results for learning vector-valued functions that should prove useful in applications. Specifically, we allow an output space Y to be a Hilbert space, and we consider a reproducing kernel Hilbert space of functions whose values lie in Y. In this setting, we derive the form of the minimal norm interpolant to a finite set of data and apply it to study some regularization functionals that are important in learning theory. We consider specific examples of such functionals corresponding to multiple-output regularization networks and support vector machines, for both regression and classification. Finally, we provide classes of operator-valued kernels of the dot product and translation-invariant type.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.