Abstract

A mere bounded number of random bits judiciously employed by a probabilistically correct algorithmic coordinator is shown to increase the power of learning to coordinate compared to deterministic algorithmic coordinators. Furthermore, these probabilistic algorithmic coordinators are provably not characterized in power by teams of deterministic ones. An insightful, enumeration technique based, normal form characterization of the classes that are learnable by total computable coordinators is given. These normal forms are for insight only since it is shown that the complexity of the normal form of a total computable coordinator can be infeasible compared to the original coordinator. Montagna and Osherson showed that the competence class of a total coordinator cannot be strictly improved by another total coordinator. It is shown in the present paper that the competencies of any two total coordinators are the same modulo isomorphism. Furthermore, a completely effective, index set version of this competency isomorphism result is given, where all the coordinators are total computable. We also investigate the competence classes of total coordinators from the points of view of topology and descriptive set theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.