Abstract
Scientists working on mathematical models want to concentrate on the design of models. They pay little attention to numerical methods such as the finite element method (FEM), their implementation and parallelization. The escript module in python provides an environment in which scientists can define new models using a language of partial differential equation (PDE) and spatial functions which is natural for the formulation of continuous models. This approach defines a high level of abstraction from the underlying data structures and frees modelers from issues of optimized implementation and parallelization. In its current implementation escript evaluates expressions which define PDE coefficients immediately for all nodes or elements of an FEM mesh. In the paper we will demonstrate that for complex rheologies such as the Drucker-Prager plasticity model, the memory requirements for this strategy are the limiting factor for scaling up the mesh size. The python module is backed by an escript C++ library where the processing is performed. We will discuss an new extension to the PDE coefficient handling provided by this C++ library which uses a lazy evaluation technique and will demonstrate the efficiency of this new extension in terms of compute time and memory usage for a practical engineering application, namely the simulation of elastic-plastic, saturated porous media. (C) 2010 Published by Elsevier Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.