Abstract

A new lattice Bolztmann BGK model for isothermal non-ideal fluid is introduced and formulated for an arbitrary lattice, composed of several D -dimensional sublattices. The model is a generalization of the free-energy-based lattice Bolztmann BGK model developed by Swift et al. (1996). We decompose the equilibrium distribution function in the BGK collision operator into ideal and non-ideal parts and employ second-order Chapman–Enskog expansion for treatment of both parts. Expansion coefficients for the non-ideal part are, in general, functions of macroscopic variables, designed to reproduce desired pressure tensor (thermodynamic aspects) and to eliminate the aphysical artifacts in the lattice Bolztmann model. The new model is shown to significantly improve quality of lattice Boltzmann modeling of interfacial phenomena. In the present model, the interface spurious velocity is orders of magnitude lower than that for existing LBE models of non-ideal fluids. A new numerical scheme for treatment of advection and collision operators is proposed to significantly extend stability limits, in comparison to existing solution methods of the ‘master’ lattice Bolztmann equation. Implementation of a ‘multifractional stepping’ procedure for advection operator allows to eliminate severe restriction CFL=1 in traditionally used ‘stream-and-collide’ scheme. An implicit trapezoidal discretization of the collision operator is shown to enable excellent performance of the present model in stiff high-surface-tension regime. The proposed numerical scheme is second order accurate, both in time and space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.