Abstract

In this work, we will analyze a class of large time-stepping methods for the Cahn–Hilliard equation. The equation is discretized by Fourier spectral method in space and semi-implicit schemes in time. For first-order semi-implicit scheme, the stability and convergence properties are investigated based on an energy approach. Here stability means that the decay of energy is preserved. The numerical experiments are used to demonstrate the effectiveness of the large time-stepping approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.