Abstract
Partial separability and partitioned quasi-Newton updating have been recently introduced and experimented with success in large scale nonlinear optimization, large nonlinear least squares calculations and in large systems of nonlinear equations. It is the purpose of this paper to apply this idea to large dimensional nonlinear network optimization problems. The method proposed thus uses these techniques for handling the cost function, while more classical tools as variable partitioning and specialized data structures are used in handling the network constraints. The performance of a code implementing this method, as well as more classical techniques, is analyzed on several numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.