Abstract

The paper is concerned with the large deviations problem in the Freidlin-Wentzell formulation without the assumption of the uniqueness of the solution to the equation involving white noise. In other words, it is assumed that for each the nonempty set of weak solutions is not necessarily a singleton. Analogues of a number of concepts in the theory of large deviations are introduced for the set , hereafter referred to as an ensemble of distributions. The ensembles of weak solutions of an n-dimensional stochastic Navier-Stokes system and stochastic wave equation with power-law nonlinearity are shown to be uniformly exponentially tight. An idempotent Wiener process in a Hilbert space and idempotent partial differential equations are defined. The accumulation points in the sense of large deviations of the ensembles in question are shown to be weak solutions of the corresponding idempotent equations.Bibliography: 14 titles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.