Abstract

We examine several types of visibility graphs in which sightlines can pass through k objects. For k ≥ 1 we bound the maximum thickness of semi-bar k-visibility graphs between ⎡2/3(k + 1) ⎤ and 2k. In addition we show that the maximum number of edges in arc and circle k-visibility graphs on n vertices is at most (k+1)(3n−k−2) for n > 4k+4 and (n 2) for n ≤ 4k+4, while the maximum chromatic number is at most 6k+6. In semi-arc k-visibility graphs on n vertices, we show that the maximum number of edges is (n 2) for n ≤ 3k+3 and at most (k+1)(2n−(k+2)/2) for n > 3k+3, while the maximum chromatic number is at most 4k+4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.