Abstract

We introduce a plus-space of Jacobi forms, which is a certain subspace of Jacobi forms of half-integral weight of matrix index. This is an analogue to the Kohnen plus-space in the framework of Jacobi forms. We shall show a linear isomorphism between the plus-space of Jacobi forms and the space of Jacobi forms of integral weight of certain matrix index. Moreover, we shall show that this linear isomorphism is compatible with the action of Hecke operators of both spaces. This result is a kind of generalization of Eichler-Zagier-Ibukiyama correspondence, which is an isomorphism between the generalized plus-space of Siegel modular forms of general degree and Jacobi forms of index $1$ of general degree.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.