Abstract
A Kodaira fibration is a compact, complex surface admitting a holomorphic submersion onto a complex curve, such that the fibers have nonconstant moduli. We consider Kodaira fibrations X with nontrivial invariant rational cohomology in degree 1, proving that if the dimension of the holomorphic invariants is 1 or 2, then X admits a branch covering over a product of curves inducing an isomorphism on rational cohomology in degree 1. We also study the class of Kodaira fibrations possessing a holomorphic section, and demonstrate that having a section imposes no restriction on possible monodromies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.