Abstract

To each knot $K\subset S^3$ one can associated its knot Floer homology $\hat{HFK}(K)$, a finitely generated bigraded abelian group. In general, the nonzero ranks of these homology groups lie on a finite number of slope one lines with respect to the bigrading. The width of the homology is, in essence, the largest horizontal distance between two such lines. Also, for each diagram $D$ of $K$ there is an associated Turaev surface, and the Turaev genus is the minimum genus of all Turaev surfaces for $K$. We show that the width of knot Floer homology is bounded by Turaev genus plus one. Skein relations for genus of the Turaev surface and width of a complex that generates knot Floer homology are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.