Abstract

We give an exhaustive, non-perturbative classification of exact travelling-wave solutions of a perturbed sine-Gordon equation (on the real line or on the circle) which is used to describe the Josephson effect in the theory of superconductors and other remarkable physical phenomena. The perturbation of the equation consists of a constant forcing term and a linear dissipative term. On the real line candidate orbitally stable solutions with bounded energy density are either the constant one, or of kink (i.e. soliton) type, or of array-of-kinks type, or of “half-array-of-kinks” type. While the first three have unperturbed analogs, the last type is essentially new. We also propose a convergent method of successive approximations of the (anti)kink solution based on a careful application of the fixed point theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.