Abstract
In the literature, the properties and the application of mode estimation is considered under simple random sampling and ranked set sampling (RSS). We investigate some of the asymptotic properties of kernel density-based mode estimation using stratified simple random sampling (SSRS) and stratified ranked set sampling designs (SRSS). We demonstrate that kernel density-based mode estimation using SRSS and SSRS is consistent, asymptotically normally distributed and using SRSS has smaller variance than that under SSRS. Improved performance of the mode estimation using SRSS compared to SSRS is supported through a simulation study. We will illustrate the method by using biomarker data collected in China Health and Nutrition Survey data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.