Abstract

In this paper we study the skein algebras of marked surfaces and the skein modules of marked 3-manifolds. Muller showed that skein algebras of totally marked surfaces may be embedded in easy to study algebras known as quantum tori. We first extend Muller's result to permit marked surfaces with unmarked boundary components. The addition of unmarked components allows us to develop a surgery theory which enables us to extend the Chebyshev homomorphism of Bonahon and Wong between skein algebras of unmarked surfaces to a "Chebyshev-Frobenius homomorphism" between skein modules of marked 3-manifolds. We show that the image of the Chebyshev-Frobenius homomorphism is either transparent or skew-transparent. In addition, we make use of the Muller algebra method to calculate the center of the skein algebra of a marked surface when the quantum parameter is not a root of unity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.