Abstract
In this paper we study the sum modulo two problem proposed by Korner and Marton. In this source coding problem, two transmitters who observe binary sources X and Y, send messages of limited rate to a receiver whose goal is to compute the sum modulo of X and Y. This problem has been solved for the two special cases of independent and symmetric sources. In both of these cases, the rate pair (H(X|Y), H(Y|X)) is achievable. The best known outer bound for this problem is a conventional cut-set bound, and the best known inner bound is derived by Ahlswede and Han using a combination of Slepian-Wolf and Korner-Marton's coding schemes. In this paper, we propose a new outer bound which is strictly better than the cut-set bound. In particular, we show that the rate pair (H(X|Y), H(Y|X)) is not achievable for any binary sources other than independent and symmetric sources. Then, we study the minimum achievable sum-rate using Ahlswede-Han's region and propose a conjecture that this amount is not less than minimum of Slepian-Wolf and Korner-Marton's achievable sum-rates. We provide some evidences for this conjecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.