Abstract

As one of the promising approaches to increase the network capacity, Full-duplex (FD) communications have recently gained a remarkable attention. FD communication enables wireless nodes to simultaneously send and receive data through the same frequency band. Thanks to the recent achievements in the self-interference (SI) cancellation, this type of communication is expected to be potentially utilized in cellular systems, especially in small cell networks. In this paper, we integrate the FD communications into femtocell networks where femtocell users (FUs) share the same spectrum with macro users (MUs). In particular, aiming to maximize the number of admitted FUs in the network and satisfying the target rate for FUs, we jointly study the problem of sub-channel allocation, duplexing-mode selection, and power control for FUs in both uplink (UL) and downlink (DL) transmissions. Moreover, we address the power control problem for macro-tier where the main goal is to minimize the transmission power of prioritized MUs while guaranteeing a target rate for them. To jointly address these problems for both tiers, we propose a distributed algorithm in which FBSs and admitted FUs choose whether to operate in half-duplex (HD) or FD mode so as to meet their target rate. The convergence and performance of the proposed algorithm are evaluated through simulation where it is demonstrated that the average admission ratio of FUs in our proposed distributed scheme surpasses the existing traditional HD approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.