Abstract

In a previous joint article with F. Abu Salem, we gave efficient algorithms for Jacobian group arithmetic of "typical" divisor classes on C_{3,4} curves, improving on similar results by other authors. At that time, we could only state that a generic divisor was typical, and hence unlikely to be encountered if one implemented these algorithms over a very large finite field. This article pins down an explicit characterization of these typical divisors, for an arbitrary smooth projective curve of genus g >= 1 having at least one rational point. We give general algorithms for Jacobian group arithmetic with these typical divisors, and prove not only that the algorithms are correct if various divisors are typical, but also that the success of our algorithms provides a guarantee that the resulting output is correct and that the resulting input and/or output divisors are also typical. These results apply in particular to our earlier algorithms for C_{3,4} curves. As a byproduct, we obtain a further speedup of approximately 15% on our previous algorithms for C_{3,4} curves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.