Abstract
We introduce the notion of a Jacobi bundle, which generalizes that of a Jacobi manifold. The construction of a Jacobi bundle over a conformal Jacobi manifold has, as particular cases, the constructions made by A. Weinstein [21] of a Le Brun-Poisson manifold over a contact manifold, and that of a Heisenberg-Poisson manifold over a symplectic (or Poisson) manifold. We show that the total space of a Jacobi bundle has a natural homogeneous Poisson structure, and that with each section of that bundle is associated a Hamiltonian vector field, defined on the total space of the bundle, tangent to the zero section, which projects onto the base manifold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.