Abstract
In this paper we consider a class of isospectral deformations of the inhomogeneous string boundary value problem. The deformations considered are generalizations of the isospectral deformation that has arisen in connection with the Camassa-Holm equation for the shallow water waves. It is proved that these new isospectral deformations result in evolution equations on the mass density whose form depends on how the string is tied at the endpoints. Moreover, it is shown that the evolution equations in this class linearize on the spectral side and hence can be solved by the inverse spectral method. In particular, the problem involving a mass density given by a discrete finite measure and arbitrary boundary conditions is shown to be solvable by Stieltjes' continued fractions.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.