Abstract
This paper deals with the classification problems of Leibniz central extensions of linear deformations of a Lie algebra. It is known that any n-dimensional filiform Lie algebra can be represented as a linear deformation of n-dimensional filiform Lie algebra μn given by the brackets [ei, e0] = ei+1, i = 0,1,…,n - 2, in a basis {e0, e1,…,en - 1}. In this paper we consider a linear deformation of μn and its Leibniz central extensions. The resulting algebras are Leibniz algebras, this class is denoted here by Ced (μn). We choose an appropriate basis of Ced (μn) and give general isomorphism criteria. By using the isomorphism criteria, one can classify the class Ced (μn) for any fixed n. Two relevant maple programs are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.