Abstract
We consider a Riemannian metric in an open subset of the d-dimensional Euclidean space and assume that its Riemann curvature tensor vanishes. If the metric is of class C2, a classical theorem in differential geometry asserts that the Riemannian space is locally isometrically immersed in the d-dimensional Euclidean space. We establish that if the metric belongs to the Sobolev space W1,∞ and its Riemann curvature tensor vanishes in the space of distributions, then the Riemannian space is still locally isometrically immersed in the d-dimensional Euclidean space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.