Abstract

A new damage detection technique using irregularity profile of a structural mode shape is proposed in this paper. The mode-shape of a cracked beam is first obtained analytically by using a general function. Its irregularity profile is then extracted from the mode shape by a numerical filter. The location and size of the crack in the beam can be determined by the peak value appearing on the irregularity profile. Two types of numerical filters, i.e., triangular and Gaussian, are examined. It has been found that the former filter is more effective in damage detection than the latter one. Numerical simulations suggest that the irregularity-based method requires a relatively low measurement resolution. Noise stress tests are carried out to demonstrate the effectiveness and robustness of this method under the influence of noise. As a validation, the proposed method is applied to detect crack damage in an E-glass/epoxy laminated composite beam. The successful detection of the crack in the composite beam demonstrates that the irregularity-based method is capable of assessing both the location and size of the crack and can be used efficiently and effectively in damage identification and health monitoring of beam-type structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call