Abstract

We prove that the canonical dimension of a coadmissible representation of a semisimple p-adic Lie group in a p-adic Banach space is either zero or at least half the dimension of a nonzero coadjoint orbit. To do this we establish analogues for p-adically completed enveloping algebras of Bernstein’s inequality for modules over Weyl algebras, the Beilinson-Bernstein localisation theorem and Quillen’s Lemma about the endomorphism ring of a simple module over an enveloping algebra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.