Abstract

In this paper, we generalize and unify some results of Sehgal and Guseman, and Ćirić’s theorem for mappings with a generalized contractive iterate at a point to cone metric spaces, in which the cone does not need to be normal. As corollaries, we obtain recent results of Huang and Zhang, and Raja and Vaezpour. Furthermore, we introduce the definition of Fisher quasi-contractions on cone metric spaces and study their properties. Among other things, using new method of proof, we solve the open problem for the interval of contractive constant λ of (Ćirić) quasi-contraction in non-normal cone metric spaces, and as sn immediate corollary, we recover the recent result of Rezapour and Hamlbarani.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.