Abstract
We consider the defocusing generalized KdV equations on the circle. In particular, we construct global-in-time solutions with initial data distributed according to the Gibbs measure and show that the law of the random solutions, at any time, is again given by the Gibbs measure. In handling a nonlinearity of an arbitrary high degree, we make use of the Hermite polynomials and the white noise functional.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Dynamics of Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.