Abstract

Suppose thatR is a prime ring with the centerZ and the extended centroidC. An additive subgroupA ofR is said to be invariant under special automorphisms if (1+t)A(1+t)−1 ⊆A for allt ∈R such thatt 2=0. Assume thatR possesses nontrivial idempotents. We prove: (1) If chR ≠ 2 or ifRC ≠C 2, then any noncentral additive subgroup ofR invariant under special automorphisms contains a noncentral Lie ideal. (2) If chR=2,RC=C 2 andC ≠ {0, 1}, then the following two conditions are equivalent: (i) any noncentral additive subgroup invariant under special automorphisms contains a noncentral Lie ideal; (ii) there isα ∈Z / {0} such thatα 2 Z ⊆ {β 2:β ∈Z}.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.