Abstract
Measuring the quality of noisy speech signals has been an increasingly important problem in the field of speech processing as more and more speech-communication and human-machine-interface systems are deployed in practical applications. In this paper, we study four widely used classical performance measures: signal-to-distortion ratio (SDR), short-time objective intelligibility (STOI), signal-to-noise ratio (SNR), and perceptual evaluation of speech quality (PESQ). Through analyzing these performance measures under the same framework and identifying the relationship between their core parameters, we convert these measures into the corresponding equivalent SNRs. This conversion enables not only some new insights into different quality measures but also a way to combine these measures into a new metric. In the derivation of the equivalent SNRs, we introduce the widely used masking technique into the computation of correlation coefficients, which is subsequently used to analyze STOI. Furthermore, we propose an attention method to compute the core parameters of PESQ, and also an empirical formula to project the equivalent SNRs into PESQ scores. Experiments are carried out and the results justifies the properties of the derived quality measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.