Abstract

Abstract A novel interval-data based Takagi-Sugeno fuzzy system is proposed to identify uncertain nonlinear dynamic systems by endowing the classical TS fuzzy system with probability theory and symbolic data analysis. Such systems have variability in their outputs, that is they produce varying responses each time when the same stimuli is applied to them under the same condition. Interval data is generated by repeating the identification experiment multiple times and applying the probabilistic techniques to get soft bounds of output. The interval data is then directly used in the TS fuzzy modelling, giving rise to interval antecedent and consequent parameters. This method does not require any specific assumption on the probability distribution of the random variable that models the uncertainty. The developed procedure is demonstrated for a pneumatic drive system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.