Abstract
Let E be an arbitrary directed graph and let L be the Leavitt path algebra of the graph E over a field K. It is shown that every ideal of L is an intersection of primitive/prime ideals in L if and only if the graph E satisfies Condition (K). Uniqueness theorems in representing an ideal of L as an irredundant intersection and also as an irredundant product of finitely many prime ideals are established. Leavitt path algebras containing only finitely many prime ideals and those in which every ideal is prime are described. Powers of a single ideal I are considered and it is shown that the intersection ⋂n=1∞In is the largest graded ideal of L contained in I. This leads to an analogue of Krull's theorem for Leavitt path algebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.