Abstract

Abstract We discuss the two most popular frameworks for identification, estimation and inference in regression discontinuity (RD) designs: the continuity-based framework, where the conditional expectations of the potential outcomes are assumed to be continuous functions of the score at the cutoff, and the local randomization framework, where the treatment assignment is assumed to be as good as randomized in a neighborhood around the cutoff. Using various examples, we show that (i) assuming random assignment of the RD running variable in a neighborhood of the cutoff implies neither that the potential outcomes and the treatment are statistically independent, nor that the potential outcomes are unrelated to the running variable in this neighborhood; and (ii) assuming local independence between the potential outcomes and the treatment does not imply the exclusion restriction that the score affects the outcomes only through the treatment indicator. Our discussion highlights key distinctions between “locally randomized” RD designs and real experiments, including that statistical independence and random assignment are conceptually different in RD contexts, and that the RD treatment assignment rule places no restrictions on how the score and potential outcomes are related. Our findings imply that the methods for RD estimation, inference, and falsification used in practice will necessarily be different (both in formal properties and in interpretation) according to which of the two frameworks is invoked.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call