Abstract

The propagation of long, weakly nonlinear interfacial waves in a two-layer fluid of slowly varying depth is studied. The governing equations are formulated to include cubic nonlinearity, which dominates quadratic nonlinearity in some parametric neighbourhood of equal layer depths. Numerical solutions are obtained for an initial profile corresponding to either a single solitary wave or a rank-ordered pair of such waves incident in a monotonic transition between two regions of constant depth. The numerical solutions, supplemented by inverse-scattering theory, are used to investigate the change of polarity of the incident waves as they pass through a ‘turning point’ of approximately equal layer depths. Our results exhibit significant differences from those reported by Knickerbocker & Newell (1980), which were based on a model equation. In particular, we find that more than one wave of reversed polarity may emerge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.