Abstract

Nanoscopic properties of TiO2 augmented with its physicochemical properties and biocompatibility make it a material interest in the biomedical field. Efficient methods to design of such materials require a thorough understanding of associated nano-bio interfaces. In the present study, density functional theory calculations were performed to study the interactions of arginine, cysteine and guanine with a nano-TiO2 cluster. Different configurations were sampled for the adsorption of arginine, cysteine and guanine to probe the nano-bio interface via the interaction of various functional groups present on biomolecules. Adsorption energies for arginine, cysteine and guanine were in a range of −25.0 to −57.6, −12.1 to −29.6 and −45.6 to −58.7 kcal/mol, respectively. From the change in adsorption energies and free energies, interaction of amino acids with carboxylic (COOH), thiol (SH) and amine (NH2) groups while the interaction of the nucleobase via O bonded to C and N of purine ring was found to be essential for thermodynamically stable and energetically favorable states. Density of states analysis also disclosed the prominent interactions of the biomolecules with the nano-TiO2 cluster. Decrease in band gaps on adsorption of the biomolecules was a pertinent phenomenon indicating the strong chemical interactions of the biomolecules with the nanoscopic TiO2 chosen for analysis in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.