Abstract
AbstractThe advantages and disadvantages of in-situ straining using both synchrotron x-ray topography and transmission electron microscopy for examining dislocation/grain boundary interactions are compared and examples given of the use of each technique. For x-ray topography, studies on ice polycrystals are discussed. Ice is well-suited for x-ray topographic studies since it has both low absorption and can be produced with a low dislocation density. Stress concentrations have been observed at grain boundaries in ice which are partially relieved by generation of 1/3<1120> dislocations. Interestingly, grain boundary generation of dislocations completely overwhelms lattice generation mechanisms. Examples of transmission electron microscope in-situ straining studies include dislocation/grain boundary interactions in L12-structured and B2-structured intermetallics. Slip transmission across grain boundaries by dislocations gliding ahead of an advancing crack is a principal feature of these studies. A significant advantage of the such studies is their inherently high resolution. However, the dislocation behavior is dominated by the inherent thinness of the specimens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.