Abstract

We introduce and investigate input-revolving finite automata, which are (nondeterministic) finite state automata with the additional ability to shift the remaining part of the input. Three different modes of shifting are considered, namely revolving to the left, revolving to the right, and circular interchanging. We investigate the computational capacities of these three types of automata and their deterministic variants, comparing any of the six classes of automata with each other and with further classes of well-known automata. In particular, it is shown that nondeterminism is better than determinism, that is, for all three modes of shifting there is a language accepted by the nondeterministic model but not accepted by any deterministic automaton of the same type. Concerning the closure properties most of the deterministic language families studied are not closed under standard operations. For example, we show that the family of languages accepted by deterministic right-revolving finite automata is an anti-AFL which is not closed under reversal and intersection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.