Abstract
This paper is concerned with the input-to-state stability (ISS) of impulsive stochastic systems. First, appropriate concepts of stochastic input-to-state stability (SISS) and pth moment input-to-state stability (p-ISS) for the mentioned systems are introduced. Then, we prove that impulsive stochastic systems possessing SISS-Lyapunov functions are uniformly SISS and p-ISS over a certain class of impulse sequences. As a byproduct, a criterion on the uniform global asymptotic stability in probability for the system in isolation (without inputs) is also derived. Finally, we provide a numerical example to illustrate our results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.