Abstract
Let (R, 𝔪) be a commutative Noetherian local ring and M an R-module which is relative Cohen-Macaulay with respect to a proper ideal 𝔞 of R, and set n := ht M𝔞. We prove that injdim M < ∞ if and only if [Formula: see text] and that [Formula: see text]. We also prove that if R has a dualizing complex and Gid RM < ∞, then [Formula: see text]. Moreover if R and M are Cohen-Macaulay, then Gid RM < ∞ whenever [Formula: see text]. Next, for a finitely generated R-module M of dimension d, it is proved that if [Formula: see text] is Cohen-Macaulay and [Formula: see text], then [Formula: see text]. The above results have consequences which improve some known results and provide characterizations of Gorenstein rings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.