Abstract

In inertial body tracking, the human body is commonly represented as a biomechanical model consisting of rigid segments with known lengths and connecting joints. The model state is then estimated via sensor fusion methods based on data from attached inertial measurement units (IMUs). This requires the relative poses of the IMUs w.r.t. the segments—the IMU-to-segment calibrations, subsequently called I2S calibrations—to be known. Since calibration methods based on static poses, movements and manual measurements are still the most widely used, potentially large human-induced calibration errors have to be expected. This work compares three newly developed/adapted extended Kalman filter (EKF) and optimization-based sensor fusion methods with an existing EKF-based method w.r.t. their segment orientation estimation accuracy in the presence of model calibration errors with and without using magnetometer information. While the existing EKF-based method uses a segment-centered kinematic chain biomechanical model and a constant angular acceleration motion model, the newly developed/adapted methods are all based on a free segments model, where each segment is represented with six degrees of freedom in the global frame. Moreover, these methods differ in the assumed motion model (constant angular acceleration, constant angular velocity, inertial data as control input), the state representation (segment-centered, IMU-centered) and the estimation method (EKF, sliding window optimization). In addition to the free segments representation, the optimization-based method also represents each IMU with six degrees of freedom in the global frame. In the evaluation on simulated and real data from a three segment model (an arm), the optimization-based method showed the smallest mean errors, standard deviations and maximum errors throughout all tests. It also showed the lowest dependency on magnetometer information and motion agility. Moreover, it was insensitive w.r.t. I2S position and segment length errors in the tested ranges. Errors in the I2S orientations were, however, linearly propagated into the estimated segment orientations. In the absence of magnetic disturbances, severe model calibration errors and fast motion changes, the newly developed IMU centered EKF-based method yielded comparable results with lower computational complexity.

Highlights

  • Inertial motion capturing has found widespread use in various applications, including biomechanics and health as two prominent ones [1,2,3,4]

  • In a recent study [22] different established calibration methods were validated against an optical reference system based on ten healthy subjects instructed by three operators

  • We investigated two scenarios: (1) a real data scenario and (2) a simulation scenario with systematically introduced calibration errors

Read more

Summary

Introduction

Inertial motion capturing has found widespread use in various applications, including biomechanics and health as two prominent ones [1,2,3,4]. This development is, among other reasons, driven by the availability of smaller, cheaper and more precise hardware [4]. Inertial measurement units (IMUs) comprise gyroscopes and accelerometers providing 3D acceleration and 3D rotational velocity. In most cases they contain magnetometers adding 3D magnetic fields. From these measurements motion information can be estimated through sensor fusion

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call