Abstract

We propose in this paper the development of a new rectangular finite element for thin plate bending based on the strain approach with linear elastic behavior. An analytical integration is used to evaluate the element stiffness matrix. The present element possesses the three main degrees of freedom (d.o.f) per node, namely, one transverse displacement (w) and two normal rotations about x and y axis respectively (Ɵx, Ɵy). The proposed displacement field represents exactly the rigid body motion and satisfies the compatibility equations. The numerical results converges rapidly to the Kirchhoff solution for thin plates, this makes the present element robust, better suitable for computations, and particularly interesting in modeling this type of structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.