Abstract
In this paper, the problem of passivity analysis for uncertain neural networks with time-varying delays is considered. By constructing an augmented Lyapunov–Krasovskii’s functional and some novel analysis techniques, improved delay-dependent criteria for checking the passivity of the neural networks are established. The proposed criteria are represented in terms of LMIs (linear matrix inequalities) which can be easily solved by various convex optimization algorithms. Two numerical examples are included to show the superiority of our results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.