Abstract

We derive here improved upper bounds on the decoding error probability of block codes which are transmitted over fully interleaved Rician fading channels, coherently detected and maximum-likelihood (ML) decoded. We assume that the fading coefficients during each symbol are statistically independent (due to a perfect channel interleaver), and that perfect estimates of these fading coefficients are provided to the receiver. The improved upper bounds on the block and bit error probabilities are derived for fully interleaved fading channels with various orders of space diversity, and are found by generalizing some previously introduced upper bounds for the binary-input additive white Gaussian nose (AWGN) channel. The advantage of these bounds over the ubiquitous union bound is demonstrated for some ensembles of turbo codes and low-density parity-check (LDPC) codes, and it is especially pronounced in a portion of the rate region exceeding the cutoff rate. Our generalization of the Duman and Salehi bound (Duman and Salehi 1998, Duman 1998) which is based on certain variations of Gallager's (1965) bounding technique, is demonstrated to be the tightest reported upper bound. We therefore apply it to calculate numerically upper bounds on the thresholds of some ensembles of turbo-like codes, referring to the optimal ML decoding. For certain ensembles of uniformly interleaved turbo codes, the upper bounds derived here also indicate good match with computer simulation results of efficient iterative decoding algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.