Abstract

We consider likelihood inference and state estimation by means of importance sampling for state space models with a nonlinear non-Gaussian observation y ~ p(y|alpha) and a linear Gaussian state alpha ~ p(alpha). The importance density is chosen to be the Laplace approximation of the smoothing density p(alpha|y). We show that computationally efficient state space methods can be used to perform all necessary computations in all situations. It requires new derivations of the Kalman filter and smoother and the simulation smoother which do not rely on a linear Gaussian observation equation. Furthermore, results are presented that lead to a more effective implementation of importance sampling for state space models. An illustration is given for the stochastic volatility model with leverage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.