Abstract
Some techniques using linear algebra was introduced by Faugere in F4 to speed up the reduction process during Grobner basis computations. These techniques can also be used in fast implementations of F5 and some other signature-based Grobner basis algorithms. When these techniques are applied, a very important step is constructing matrices from critical pairs and existing polynomials by the Symbolic Preprocessing function (given in F4). Since multiplications of monomials and polynomials are involved in the Symbolic Preprocessing function, this step can be very costly when the number of involved polynomials/monomials is huge. In this paper, multiplications of monomials and polynomials for a Boolean polynomial ring are investigated and a specific method of implementing the Symbolic Preprocessing function over Boolean polynomial rings is reported. Many examples have been tested by using this method, and the experimental data shows that the new method is very efficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.