Abstract

The truncated version of the generalized minimal residual method (GMRES), the incomplete generalized minimal residual method (IGMRES), is studied. It is based on an incomplete orthogonalization of the Krylov vectors in question, and gives an approximate or quasi-minimum residual solution over the Krylov subspace. A convergence analysis of this method is given, showing that in the non-restarted version IGMRES can behave like GMRES once the basis vectors of Krylov subspace generated by the incomplete orthogonalization are strongly linearly independent. Meanwhile, some relationships between the residual norms for IOM and IGMRES are established. Numerical experiments are reported to show convergence behavior of IGMRES and of its restarted version IGMRES(m).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.