Abstract
We develop a notion of a non-commutative hull for a left ideal of the [Formula: see text]-algebra of a compact quantum group [Formula: see text]. A notion of non-commutative spectral synthesis for compact quantum groups is proposed as well. It is shown that a certain Ditkin’s property at infinity (which includes those [Formula: see text] where the dual quantum group [Formula: see text] has the approximation property) is equivalent to every hull having synthesis. We use this work to extend recent work of White that characterizes the weak[Formula: see text] closed ideals of a measure algebra of a compact group to those of the measure algebra of a coamenable compact quantum group. In the sequel, we use this work to study bounded right approximate identities of certain left ideals of [Formula: see text] in relation to coamenability of [Formula: see text].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.