Abstract
Abstract A convex polytope admits a Coxeter decomposition if it is tiled by finitely many Coxeter polytopes such that any two tiles having a common facet are symmetric with respect to this facet. In this paper, we classify all Coxeter decompositions of compact hyperbolic Coxeter n-polytopes with n + 2 facets. Furthermore, going out from Schläfli‘s reduction formula for simplices we construct in a purely combinatorial way a volume formula for arbitrary polytopes and compute the volumes of all compact Coxeter polytopes in ℍ4 which are products of simplices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.